CS106A Handout #09
Winter 2015 January 16, 2015

Assignment 2: Welcome to Java!

Based on an assignment by Eric Roberts and Mehran Sahami
Having helped Karel the Robot through the challenges of Assignment 1, it's time to transition into the
wonderful world of Java programming!

In this assignment, you will work through six small programs, each giving you a feel for how to use
variables, methods, control structures, the acm.graphics package, and other features of Java not
present in Karel's world. By the time you're done, you'll be ready to start building larger, more elabo-
rate Java programs.

Good luck, and have fun!

Due Monday, January 26 at 3:15PM

Part One: The Quadratic Formula

A quadratic equation is an equation of the form ax* + bx + ¢ = 0, where a is nonzero. Given the values
of a, b, and c, the quadratic formula says that the roots of the quadratic equation are given by

= —b+\Vb —4dac

2a

The quantity b* — 4ac is called the discriminant. 1f it's greater than zero, there are two different roots of
the quadratic equation, which are given by the above formula. If it's exactly zero, there's just one root,
given in two different ways by the quadratic formula. If it's negative, there are no (real) roots to the
equation.

Your job is to write a program that prompts the user for the values of a, b, and ¢, then prints out the
roots of the quadratic equation ax? + bx + ¢ = 0. Your program should be able to duplicate the following
sample run, plus runs with other values:

® - 0 QuadraticFormula @ - O QuadraticFormula

File Edit File Edit

Enter a: 1 = |Enter a: 1 =
Enter b: -3 Enter b: 2

Enter c: -4 Enter c: 1

There are two roots. There is one root: -1.8

One root is 4.8
The other is -1.6

[4]

&l
A [*] Ji4] | ¥
F

@ - 0 QuadraticFormula

File Edit

[»

Enter a: 2
Enter b: 4
Enter c: &
There are no real roots.

-

4] | ¥

For reference, to compute the square root of some number x, you can use the Math.sqrt function. For
example, the code

double y = Math.sqrt(x);
sets y to the square root of x.
Some notes:
« You can assume that the user doesn't enter 0 as their value for a.

« Aside from the above restriction, the values of @, b, and ¢ can be any real numbers.

Part Two: Illusory Contours

The illusory contours illusion is a famous optical illusion that looks like this:

— 0 IllusoryContours

File Edit
Your job in this part of the assignment is to create a program that draws this illusion. The three-quarters
circles should all be the same size and should be flush up against the edges of the window. Addition-
ally, your program should be designed such that it's easy to adjust the sizes of the circles; think about

using constants. There are many approaches you can take to draw this figure, some of which are easier
than others. You're welcome to choose any approach you'd like.

Part Three: Pawprints

Your task in this part of the assignment is to implement a method that draws a pawprint. In the starter
code, we've given you a program with an incomplete implementation of a method called

private void drawPawprint(double x, double y)

The x and y parameters to this method give the coordinates of the upper-left corner of the bounding

box of the pawprint (similar to how the x and y coordinates of a GOval give the coordinates of the up-

per-left corner of the oval's bounding box). The pawprint should consist of three toes and a heel, as
shown in the picture (which has two pawprints drawn).

9.oC) Pawprints The provided starter code contains some constants that

File Edit specify how big each toe is, how big the heel is, and the
relative offset from the upper-left corner of the bounding
box to each toe and to the heel. For example, the first toe

. would be drawn FIRST_TOE_OFFSET_X pixels to the
. . right to the specified x coordinate and FIRST_TOE_OFF -
SET_Y pixels below the specified y coordinate.

. . . The provided starter code's run method is set up to call
drawPawprint in two different locations. If you see the
pawprint drawn correctly at those locations, then your

method probably works!

Part Four: Tricolor Flags

Many countries, regions, territories, and states have tricolor flags, flags purely consisting of three
evenly-sized vertical or horizontal bars. Armenia, Austria, Belgium, Bulgaria, Chad, Estonia, France,
Gabon, Germany, Guinea, Hungary, Ireland, Italy, Ivory Coast, Lithuania, Luxembourg, Mali, the
Netherlands, Nigeria, Peru, Romania, Russia, South Ossetia, Sierra Leone, and Yemen all have tricolor
flags. (I apologize if I missed anything — if I did, let me know!)

Your job is to write a program that draws a tricolor flag of your own choosing centered both vertically
and horizontally in the window. It can be a tricolor flag of an actual state or region, or it can be of your
own invention. The width and height i

of the flag should be controlled by =& - o TricolorFlag

the two named constants FLAG_WIDTH @ File Edit

and FLAG_HEIGHT.

You should then add a GLabel in the
bottom-right corner of the window
with the text “Flag of x,” where x is
which country or region the flag rep-
resents (whether real or fictional).
Your GLabel should be flush against
the bottom-right corner of the win-
dow and none of the text should be
cut off. To guarantee this, you'll need
to compute the position for the label.
This will require you to have an un-
derstanding of a few different text
measurements; check pages 307 —
311 of The Art and Science of Java
for details, and in particular look into
ascent and descent heights.

Flag of Belgium

In the course of this assignment, you might want to use colors not given by the enumerated color con-
stants Color.RED, Color.BLUE, etc. In Java, you can create custom colors by specifying the amount of
red, green, and blue that make up that color. For example, the following code will define a global con-
stant called CARDINAL_RED:

private static final Color CARDINAL_RED = new Color(196, 30, 58);

This constant is called CARDINAL_RED rather than Color.CARDINAL_RED, so if you wanted to set the
color of an object to CARDINAL_RED, you'd write something to the effect of.

obj.setColor (CARDINAL_RED);

If you visit Wikipedia's “List of Colors” articles, you can get the amounts of red, green, and blue for all
sorts of different colors.

Part Five: The Boxes Illusion

In this problem, you'll write a program that produces an optical illusion. By drawing a grid of black
squares with small amounts of spacing in-between them, your brain will trick you into thinking there
are small grayish areas in the corners between those squares. You can see this here:

% - o Boxeslllusion | Weld like you to structure your program so

that the figure can easily be modified by
changing some of the constants in the starter
code. Specifically:

File Edit

« The number of of rows and columns in
the figure should be controlled by the
NUM_ROWS and NUM_COLS constants.

« The width and height of each box should
be controlled by the BOX_SIZE constant.

« The spacing between the boxes should be
controlled by the BOX_SPACING constant.

« The entire figure should be centered both
horizontally and vertically in the window.

Part Six: Caterpillars

Your job in this part of the assignment is to draw a caterpillar made out of a bunch of GOvals. You can
get a nice caterpillar effect by slightly overlapping the ovals horizontally and shifting half of the ovals
down a slight amount from the rest. Notice that the body segments are stacked so that the leftmost oval

is at the bottom and the rightmost is at the top.
])) #® — O Caterpillar
In the example picture to the right, we fiddled with

the APPLICATION_WIDTH and APPLICATION_HEIGHT | File Edit
constants to get the caterpillar to precisely fill the
window. You're not required to do this — you can draw
the caterpillar anywhere you want in the window.
You're not required to fill the entire canvas, and you
don't need to make the caterpillar's size proportional
to the size of the window.

The caterpillar you draw should have each circle in the body filled in. Each circle's fill color must be
different than its border color. Other than that, you're welcome to choose the colors, sizes, and relative
spacing of the body segments however you'd like. We did a fair amount of experimentation to come up
with the values used in the image shown here.

As in Part Five of this assignment, you should use named constants in your program to make it easy to
change various aspects of the drawing. Specifically, you should use constants to control the horizontal
and vertical spacing of the caterpillar's body segments, the caterpillar's colors, and the total number of
body segments in the caterpillar. One particular note — your section leader should be able to change the
number of body segments in the caterpillar to be either even or odd.

(Optional) Part Seven: Extensions!

Can you think of a way to make one of the programs you wrote more exciting? If so, for extra credit,
you're welcome to go above and beyond what we've asked you to do in this assignment.

If you'd like to implement extensions on top of any of these programs, please feel free to do so. To
make it easier to grade your assignments, if you do choose to add extensions, please create separate
programs for the “base” version of the assignment (what we asked you to do in this handout) and the
“extended” version of the assignment (what you chose to do on top.) For example, if you wanted to add
extensions to the pawprints program, you could submit your assignment with both a Pawprints. java
program and an ExtendedPawprints. java program.

Adpvice, Tips, and Tricks

Many of the programs you'll be writing need to work for a variety of user inputs. For example, the qua-
dratic formula program should be able to handle real numbers as inputs (except for a = 0). Some of the
other programs that you'll be writing need to reference constants defined in your program. One of the
major points of defining constants in a program is to make it easier to change your program's behavior
simply by adjusting the value assigned to that constant. During testing, we will change the values of the
constants in your programs to check whether you have correctly and consistently used constants. Be-
fore submitting, check whether or not your programs behave correctly when you vary the values of the
constants in the program. It would be a shame if your section leader dropped you from a v+ to a v be-
cause you had forgotten to test your program on some particular input.

Style is just as important as ever in this assignment. Be sure to follow the style guidelines set out from
the Karel assignment — use a top-down design, comment your code as you go, have intelligent method
names, and indent your code properly. In addition to this, now that we've added variables, methods, and
constants into the mix, you should check your code for the following stylistic issues:

« Do you have clear names for your variables? In Java, the convention is that variables should
be written in lowerCamelCase and should clearly describe what values they represent. Avoid
single-letter variable names except in for loops or when the single letter actually is an appropri-
ate variable name. Try to be descriptive about what values will be stored in the variable.

« Do you use methods appropriately? In many of these programs you will end up writing simi-
lar code multiple times. Whenever possible, factor this similar code out into a method and intro-
duce parameters if necessary. This makes code easier to read, maintain, test, and debug.

« Do you have appropriate inline comments? Method comments are a great way to make your
intentions easier to follow, but it is also important to comment the bodies of your methods as
well. Use comments to indicate what task different pieces of the code are trying to perform, or
to clarify logic that is not immediately obvious.

- Do you make appropriate use of constants? Several of the programs you'll write — especially
the graphics programs — will require values that will not be immediately evident from context.
When appropriate, introduce constants to increase readability and customizability.

- Did you update the file comments appropriately? Java files should begin with a comment
describing who wrote the file and what the file contains. Did you update the comments at the
top of each Java file with information about your program?

This is not an exhaustive list of stylistic conventions, but it should help you get started. As always, if
you have any questions on what constitutes good style, feel free to stop on by the Tresidder LalR with
questions, come visit us during office hours, or email your section leader with questions.

Good luck!

